#include "MusimatTutorial.h"
Go to the source code of this file.
Functions | |
MusimatTutorialSection (B0203) | |
Real | mm (Real beats, Real perMinute) |
Static Void | para1 () |
Real mm | ( | Real | beats, |
Real | perMinute | ||
) |
MusimatTutorialSection | ( | B0203 | ) |
Definition at line 2 of file B0203.cpp.
References para1().
{ Print("*** B.2.3 Tempo ***"); /***************************************************************************** B.2.3 Tempo In common music notation, tempo is expressed using Mälzel's metronome markings (see sec- tion 2.6.2). For example, Q = 60MM indicates that the beat or pulse of the music is associated with quarter notes and that there are 60 beats per minute. Thus at Q = 60MM each quarter note lasts 1 second, and at Q = 120MM each quarter note lasts 0.5 second. Thus tempo scales the durations of rhythms. We can emulate this by calculating a tempo factor based on Mälzel's metronome markings. Rhythms are then multiplied by this coefficient to determine their actual duration. First, we need a function that calculates the tempo factor: *****************************************************************************/ para1(); // Step into this function to continue the tutorial }
Static Void para1 | ( | ) |
Definition at line 26 of file B0203.cpp.
References mm().
{ /***************************************************************************** The beats argument is the rhythmic value that gets the beat, and the perMinute argument is the number of beats per minute. For example, *****************************************************************************/ Real tempoScale = mm( Duration(Quarter), 60.0 ); // 60 quarternotes per minute /***************************************************************************** sets tempoScale to 1.0, and *****************************************************************************/ tempoScale = mm(Duration(Quarter), 120.0); // 120 quarternotes per minute /***************************************************************************** sets tempoScale to 0.5. Scaling a list of rhythms with tempoScale adjusts them to the pre- vailing tempo. Start with a rhythm list. *****************************************************************************/ RhythmList T(Quarter, Eighth, Eighth, Eighth, Sixteenth, Sixteenth, Quarter); Print(T); /***************************************************************************** prints {(1,4), (1,8), (1,8), (1,8), (1,16), (1,16), (1,4)}. Now scale it. *****************************************************************************/ RhythmList S = T * tempoScale; // tempoScale == 0.5 Print(S); /***************************************************************************** prints {(1,8), (1,16), (1,16), (1,16), (1,32), (1,32), (1,8)}. Though this explicit approach to managing tempo works fine, in fact Rhythm() has this cal- culation conveniently built in. It works in conjunction with a built-in function named Set- Tempo() that implicitly scales all rhythmic durations by the specified tempo factor. So, for example, given the preceding definition of RhythmList T, *****************************************************************************/ SetTempoScale(mm(Duration(Quarter), 90)); // set tempo to 90 quarternotes per minute Print(T); /***************************************************************************** prints {(1,6), (1,12), (1,12), (1,12), (1,24), (1,24), (1,6)}. All rhythmic values are scaled implicitly by Rhythm(). *****************************************************************************/ }